
J
H
E
P
0
9
(
2
0
0
6
)
0
1
7

Published by Institute of Physics Publishing for SISSA

Received: July 28, 2006

Accepted: August 9, 2006

Published: September 7, 2006

Prospects for mirage mediation

Aaron Pierce and Jesse Thaler

Jefferson Physical Laboratory, Harvard University

Cambridge, MA 02138, U.S.A.

E-mail: apierce@physics.harvard.edu, jthaler@jthaler.net

Abstract: Mirage mediation reduces the fine-tuning in the minimal supersymmetric

standard model by dynamically arranging a cancellation between anomaly-mediated and

modulus-mediated supersymmetry breaking. We explore the conditions under which a mi-

rage “messenger scale” is generated near the weak scale and the little hierarchy problem

is solved. We do this by explicitly including the dynamics of the SUSY-breaking sector

needed to cancel the cosmological constant. The most plausible scenario for generating

a low mirage scale does not readily admit an extra-dimensional interpretation. We also

review the possibilities for solving the µ/Bµ problem in such theories, a potential hidden

source of fine-tuning.

Keywords: Supersymmetry Breaking, Supersymmetric Standard Model, Supergravity

Models.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep092006017/jhep092006017.pdf

mailto:apierce@physics.harvard.edu
mailto:jthaler@jthaler.net
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
9
(
2
0
0
6
)
0
1
7

Contents

1. Motivation 1

2. Review of mirage mediation 3

3. Assessing the naturalness of the uplift potential 5

4. The µ/Bµ problem in mirage mediation 7

5. Conclusions 11

A. Series expansion for α 11

1. Motivation

For twenty years, supersymmetry (SUSY) has reigned as the most compelling solution to

the hierarchy problem. Recently, confidence that the minimal supersymmetric standard

model (MSSM) is realized in nature has been eroded by the so-called “little hierarchy

problem”. In the MSSM, the little hierarchy appears as a tension between the two different

roles played by the stop squark: on the one hand, the stop should be light to cut off the

quadratic divergence in the Higgs boson (mass)2 and thus minimize fine-tuning; on the

other hand, the stop should be heavy enough to generate a physical mass for the Higgs

boson above the LEP II bounds. This tension is exacerbated by renormalization group (RG)

flow which tends to drive colored particles heavier than electroweak particles. The LEP

II bound on charginos, along with the assumption of universal gaugino masses, generically

ensures that the stop is quite heavy, requiring fine-tuning at the percent level to achieve

successful electroweak symmetry breaking.

One potential way to reduce the level of fine-tuning is to have a compressed SUSY

spectrum at low scales. Any mechanism yielding such a spectrum while simultaneously

evading the bound on the Higgs boson mass merits study. Mirage mediation [1, 2], based

on the investigations of [3, 4], claims to be such a mechanism. In mirage mediation, a

cancellation between modulus mediation [5, 6] and anomaly mediation [7, 8] creates a

distinctive low energy SUSY spectrum that appears to unify at a mirage “messenger scale”

Mmess ¿ MGUT. Because this cancellation occurs at every RG scale, there is no hidden

fine-tuning between the modulus- and anomaly-mediated contributions [9]. In addition,

mirage mediation generically yields large trilinear A terms which generate a large enough

physical Higgs mass. Since the leading correction to the Higgs (mass)2 goes like

∆m2
Hu = − 3y2

t

4π2
m2
t̃

ln

(
Mmess

mt̃

)
, (1.1)

the level of fine-tuning can be reduced if Mmess is close to the weak scale.
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The value of Mmess is determined by the relative contributions to the visible sector soft

masses of modulus and anomaly mediation. However, this ratio can only be evaluated after

SUSY has been broken and the cosmological constant (CC) has been tuned to zero. Mirage

mediation occurs in theories where a modulus T is stabilized in a supersymmetric AdS

vacuum uplifted by a independent source of SUSY breaking. In the simplest theory where

a mirage scale can be realized, the KKLT construction [10], the AdS vacuum is lifted by the

presence of a SUSY-breaking D3 brane. In this case, one finds Mmess ∼
√
m3/2MPl, which

would not solve the little hierarchy problem. To achieve a lower mirage messenger scale,

the authors of [1, 2] break SUSY explicitly through an ad-hoc uplift potential proportional

to (T + T †)nlift , where nlift is assumed to take on discrete values. The mirage messenger

scale is then found to be

Mmess ∼
MGUT(

MPl/m3/2

)α/2 , (1.2)

where α is a function of nlift. Written this way, it appears that Mmess ∼ TeV can be

achieved simply by assuming α = 2.

However, because the modulus is stabilized without breaking supersymmetry, the uplift

sector is the dominant source of SUSY breaking in mirage mediation. As discussed in [11],

the goldstino has a large overlap with the uplift sector, so the ad-hoc uplift potential

neglects the dynamics of light fields in the complete theory. In this paper, we assess

the prospects for mirage mediation to solve the little hierarchy problem by attempting to

construct an explicit model where Mmess ∼ TeV. We find that the most plausible scenario

for achieving this low Mmess is for SUSY breaking to be triggered by a chiral superfield X

with effective modular weight rX , yielding

α =
2

2 + rX
. (1.3)

If T is a volume modulus, rX is expected to range between 0 and 1, and for brane-localized

SUSY breaking as in KKLT, rX = 0 and thus α = 1. To get α = 2 requires rX = −1, so

while there is indeed a 4D supergravity Lagrangian that yields a low mirage messenger scale,

this theory has some peculiar properties. As T grows large gravity gets weaker, but negative

rX implies that the uplift sector must get strongly coupled in the decompactification limit.

We conclude that a crucial model-building challenge to achieving mirage mediation with

low fine-tuning is to find a justification for negative effective modular weights in the uplift

sector.

Furthermore, before any supersymmetric model can declare victory over the fine-tuning

problem, it must demonstrate a plausible mechanism for generating the right µ/Bµ ratio.

This issue is of special concern for mirage mediation because m3/2 À MZ . As in any

theory where anomaly mediation is active, one generically expects B ∼ m3/2, resulting in a

fine-tuning for the weak scale. Interestingly, we find that the only solution in the literature

that seems to work without additional fine-tuning explicitly relies on the existence of a low

mirage messenger scale [1].

In the next section, we review the mechanism of mirage mediation in the language

of [1, 2] where Mmess is determined by an ad-hoc uplift potential. In section 3, we assess

– 2 –
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the plausibility of Mmess ∼ TeV by explicitly include the source of SUSY breaking that

generates the uplift potential. The issue of µ/Bµ is examined in section 4. We conclude

with some comments about mirage mediation and cosmology.

2. Review of mirage mediation

The discussion in this section closely follows [2 – 4, 12]. In the conformal compensator

language, the leading two-derivative supergravity Lagrangian can be written as [13]

L =

∫
d4θ φ†φΩ +

∫
d2θ φ3W + h.c. + gravity and gravitino terms (2.1)

with φ = 1 + Fφθ
2. The starting point for mirage mediation is a modulus T with a

KKLT-like Kähler potential and superpotential:

Ω ∼ (T + T †)n0 , W = ae−bT + c, (2.2)

where b is a real coefficient, and one expects

a ∼M3
Pl, c ∼ m3/2M

2
Pl, m3/2 ∼ 10− 100 TeV. (2.3)

There are two contributions to the SUSY-breaking masses in the visible sector. First, there

is the contribution from anomaly mediation, which is suppressed by a loop factor from the

scale Fφ. The second contribution is proportional to

M0 =
FT

T + T †
, (2.4)

which parameterizes the supersymmetry breaking mediated by the modulus T .

A mirage messenger scale is generated if the couplings of the visible sector fields to the

modulus T obey certain properties. The modulus field must couple linearly to the gauge

kinetic terms: ∫
d2θ

T

4
Wα
aWa

α. (2.5)

The couplings of T to the chiral superfields of the MSSM are also constrained. A generic

visible sector field Qi appears in the Kähler potential as

Ω 3 Q†iQi(T + T †)n0ri , (2.6)

with ri giving the effective modular weight of the field Qi. Then, if the superpotential

contains

W 3 λijkQiQjQk (2.7)

with an appreciable Yukawa coupling, the existence of a well-defined mirage scale is guar-

anteed if

ri + rj + rk = 1. (2.8)

Furthermore, the hypercharges of the chiral superfields must obey the relation
∑

i

riYi = 0. (2.9)

– 3 –
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As emphasized in [2], these requirements on the modular weights can be realized by choosing

rM = 1/2 for matter fields and rH = 0 for Higgs fields. This choice also avoids dangerous

flavor changing neutral currents, and a geometric picture for obtaining these weights from

D7 and D3 branes was presented in [2].

If these conditions on the couplings of T to the visible sector are met, then the modulus-

and anomaly-mediated contributions to the visible sector soft masses exhibit a nice can-

cellation. For example, including the effect of one-loop running, the gaugino masses at the

RG scale µR are given by

ma(µR) = M0

(
1− bag

2
a(µR)

8π2
log

MGUT

µR

)
+
bag

2
a(µR)

16π2
Fφ, (2.10)

= M0

(
1− bag

2
a(µR)

8π2
log

Mmess

µR

)
, (2.11)

where the mirage messenger scale is given by

Mmess ≡MGUT e
−Fφ/2M0 . (2.12)

Of course, the mere existence of a mirage scale is insufficient to solve the little hierarchy

problem; the mirage scale should be also be near the weak scale. The key realization is

that as long as Fφ/M0 is sufficiently large, then Mmess can be O(TeV). A priori, we have

no reason to expect Fφ/M0 to have any particular value, but given the superpotential in

eq. (2.2), one expects

bT ∼ log
a

c
∼ log

MPl

m3/2
. (2.13)

Therefore, if Fφ/M0 can be calculated as a power series in this quantity

Fφ
M0

=
α

ε
+O(ε0), ε ≡ 1

〈bRe T 〉 , (2.14)

then we can have a parametrically small Mmess if α is non-zero. That is to say, the hierarchy

needed between Fφ and M0 can be related to the stabilization of bT at large values. In

particular, if eq. (2.13) holds,1

Mmess ∼
MGUT(
e1/ε

)α/2 ∼
MGUT(

MPl/m3/2

)α/2 . (2.15)

Once a mechanism is specified to obtain α ' 2, then Mmess ∼ TeV as desired for the little

hierarchy problem.

The value of α depends on the way in which the AdS vacuum generated by eq. (2.2) is

lifted. In [1, 2], the uplift potential is included by adding an explicit SUSY breaking term

to the Kähler potential

Ωlift = θ2θ̄2Vlift, Vlift = d(T + T †)nlift . (2.16)

1For any non-zero value of α, one can of course fine-tune the ratio Fφ/M0 by adjusting the values of

a and c. However, absent a good reason to expect a/c to be substantially different from MPl/m3/2, we

ignore this mechanism for adjusting Mmess. Similarly, if MPl is determined by other moduli in addition to

T , then the equations of motion for T will no longer set bT ∼ logMPl/m3/2 (see eq. (A.12)) and we lose

the predictive power of mirage mediation.

– 4 –
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Though the origin of Vlift is not specified by [1, 2], they note that if nlift = n0, then α = 2

after tuning the CC to zero.

Already at this level, this uplift potential looks strange. Because T is a modulus,

eq. (2.2) suggests that n0 should be positive. On the other hand, Vlift characterizes the size

of SUSY breaking, and one does not normally expect SUSY breaking to grow with volume,

as would be the case for nlift = n0. For brane-localized SUSY breaking, Vlift is expected to

be independent of T . Therefore, a complete theory that yields Mmess ∼ TeV will probably

not have a nice extra-dimensional interpretation.

3. Assessing the naturalness of the uplift potential

Given how important the form of the uplift potential is for setting Mmess, we want to

understand how to generate such a potential from a complete theory. In particular, the

T sector does not break SUSY on its own, so whatever field(s) contribute to the SUSY-

breaking uplift potential will have a large overlap with the goldstino. As recently discussed

in [11], instead of simply inserting a SUSY-breaking uplift spurion, one should keep track

of the light fields in the uplift sector. (See also [14].)

The best prospect for finding a field-theoretic realization of the desired uplift potential

is a 4D, N = 1 theory. Additional constraints arising from N = 2 SUSY in a bulk 5D

theory could only make constructing the desired uplift potential more difficult. The case

of a single chiral field X should be general if we impose that there be no fine-tunings to

realize the uplift potential; additional fields would necessitate tunings between different

SUSY breaking contributions. We allow arbitrary mixing between X and T in the Kähler

potential as long as the shift symmetry on T is preserved, and we allow arbitrary mixing

in the superpotential as long as T appears only once in the combination e−bT . Direct

mediation of SUSY breaking to MSSM multiplets Qi from Kähler potential terms like

X†XQ†iQi/M
2
Pl would spoil the predictions of mirage mediation, so these terms must be

suppressed via some form of sequestering. With these assumptions, our effective 4D theory

is given by

Ω = Ω(X,X†, T + T †), W = a(X)e−bT + c(X), (3.1)

where Ω, a, and c are arbitrary functions and b is a real parameter.

In appendix A, we calculate α from eq. (2.14) using the specific form of eq. (3.1). To

leading order in ε, tuning the CC to zero is equivalent to sending

Fφ
hFX

→ −1, h =
cX
3c
, (3.2)

where subscripts on functions indicate partial derivatives and all functions are evaluated

at the minimum of the potential. For reference:

Fφ
FX

=
h∗ΩX − ΩX†X

ΩX† − h∗Ω
+O(ε). (3.3)

Once the CC tuning is applied, we find

α =
2

2− β − γ , β =
1

h

(h∗ΩXT − ΩX†XT

ΩX†T − h∗ΩT

)
, γ =

1

h

aX
a
. (3.4)
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We see immediately that the only way to get make α 6= 1 is to have terms in Ω or W that

mix X and T . In the original KKLT scenario [10], the role of X is played by a D3 brane

which does not communicate with the modulus field (β = γ = 0), generically leading to

α = 1.

The philosophy of mirage mediation is that α should be determined by discrete choices

in the Lagrangian. In this way, determination of α does not contribute to the fine-tuning

present in the theory. Since the expression for α in eq. (3.4) depends on various combina-

tions of functions and their derivatives, avoiding explicit tunings between terms requires

focusing on limits where a given term dominates. We will start by checking whether γ can

naturally take on discrete values, then we will consider different options for adjusting β.

Because ΩXT appears in both the numerator and denominator of β, there are three cases

that avoid an explicit tuning: (i) the tuning of the CC naturally relates the numerator

and denominator of β, (ii) ΩXT dominates, or (iii) ΩXT is very small. At the end of the

day, this third method will yield a viable model with α = 2, but the form of the Kähler

potential will not have an obvious extra-dimensional interpretation.

First, from eq. (3.4) it is possible for γ to take on discrete values if

a(X) = A1−nac(X)na , (3.5)

where A has mass dimension 3. This yields γ = 3na. Not only is it unclear how to obtain

such a superpotential from a top-down theory, but there is a second problem. The goal

of mirage mediation is to generate Fφ/M0 ∼ 2 logMPl/m3/2. While this special form of

the superpotential assures discrete choices for α, it no longer guarantees that 〈bT 〉 will be

quantitized in units of logMPl/m3/2, so there is no sense in which Fφ/M0 is a discrete

choice. In particular,

〈bT 〉 ∼ log
a

c
∼ (1− na) log

A

c
, (3.6)

and the stabilization of bT depends on the choice of A. If one could motivate a particular

value for A, it might be interesting to see whether the peculiar superpotential in eq. (3.5)

might lead to weak scale mirage mediation. But for the remainder of the section, we will

take unceratinty in A as an indicator of fine-tuning and assume γ = 0.

How can we arrange β to take on discrete values? Note that βh in eq. (3.4) looks very

similar to Fφ/FX in eq. (3.3) with additional T derivatives. Because the tuning of the

CC in eq. (3.2) already relates h to Fφ/FX , it seems plausible that this tuning might be

sufficient to insure special values for β. However, for generic values of ΩXT , the only time

we can make use of the CC tuning is when the T derivatives in eq. (3.4) act the same way

on each term in β. In particular,

ΩT

Ω
=

ΩXT

ΩX
=

ΩX†XT

ΩX†X
= f(T + T †), β =

Fφ
hFX

= −1, α =
2

3
. (3.7)

This value of α does not substantially improve the little hierarchy problem.

A more promising method to get β ' 1 (α ' 2) is to let h∗ΩXT be real and large. In

particular, α→ 2 in the limit

h∗ΩXT À ΩX†XT , h∗ΩXT À |h|2ΩT . (3.8)

– 6 –



J
H
E
P
0
9
(
2
0
0
6
)
0
1
7

However, the first of these conditions seems problematic. If X starts off with a kinetic term

X†X(T + T †)nX , we expect ΩXT ∼ 〈X†〉ΩX†XT . Once we tune the CC, the first condition

in eq. (3.8) tells us

〈X†〉 À FX
Fφ
∼MPl, (3.9)

and one worries about the reliability of effective field theory in the presence of Planckian

vevs.

Now, we can achieve α = 2 consistent with the philosophy of mirage mediation if we

take ΩXT → 0. In this case, the leading Kähler potential should have the form

Ω = −d1(T + T †)n0 + d2X
†X(T + T †)rXn0 + · · · , (3.10)

where di are positive constants of the appropriate dimensionality. In order for ΩXT ∼ 0,

there must be some reason for 〈X〉 = 0, and the only symmetry that allows FX 6= 0

with 〈X〉 = 0 is an R-symmetry where X has R-charge 2. As shown in appendix A, the

R-breaking induced by c generically shifts 〈X〉 by a controllable amount that does not

drastically change α. Aside from those small corrections, we find

β = −rX , α =
2

2 + rX
, (3.11)

so it is indeed possible to get α = 2 if rX = −1.

Unfortunately, we know of no geometric interpretation to justify negative rX val-

ues. Negative rX implies that as T → ∞, X gets more and more strongly coupled,

precisely the opposite behavior of ordinary fields propagating in extra dimensions. Note

that X†X/(T +T †) must generate the leading kinetic term for X; any bare X †X piece will

drag α smaller than 2. Therefore, a crucial model building challenge to achieving mirage

mediation with low fine-tuning is finding a justification for X to have effective modular

weight rX = −1. Also, the uplift sector must be sequestered from the visible sector in or-

der to suppress the contribution of higher dimension operators to the MSSM soft masses,

but the standard method of brane-localization is not compatible with rX = −1. However,

apart from questions of plausibility, the model in eq. (3.10) has no tachyons or ghosts and

all fields can be stabilized.

4. The µ/Bµ problem in mirage mediation

The origin of µ term presents a puzzle: why should this supersymmetric term be of order

the weak scale? As with all theories with large gravitino mass, this question is sharpened

in the case of mirage mediation. The simplest supergravity solution, the Giudice–Masiero

(GM) mechanism [15], is unavailable. Because the gravitino mass is a loop-factor above

the weak scale, GM predicts a too large µ ∼ m3/2 À MZ . One can alleviate this issue

by requiring the coefficient of the GM operator to be small, but another problem remains.

The contribution to Bµ arising from the conformal compensator is generically of order Fφµ,

yielding B ∼ m3/2. Since we require |m2
Hu
|, |m2

Hd
| ∼ M2

Z to keep fine-tuning small, this

would prevent proper electroweak symmetry breaking. In theories like mirage mediation

– 7 –
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where anomaly mediation is active, the challenge is to ensure the generated B-term is

sufficiently small. In this section, we review three possibilities for generating the µ and Bµ

terms, and assess the prospects for each mechanism.

One possibility, originally discussed in [7] and adopted for the case of mirage mediation

in [2], is to forbid the leading GM operator, and instead rely on the operator:

Lµ =

∫
d4θ φ†φ

(
y(Σ + Σ†)HuHd + h.c.

)
, (4.1)

where Σ is normalized to be dimensionless and y is a dimensionless coupling. This operator

generates

µ = y
(
F †Σ + F †φ〈Σ + Σ†〉

)
, (4.2)

Bµ = −y
(
|Fφ|2〈Σ + Σ†〉+ (FΣF

∗
φ − h.c)

)
+ (γHu + γHd)Fφµ. (4.3)

The last term in the expression for Bµ is the usual anomaly–induced contribution. It comes

from the wave-function renormalization of the Hu and Hd fields, analytically continued into

superspace. After RG evolution down to the weak scale, this final term can give µ and Bµ

in the proper ratio [2].

Thus, to utilize the above mechanism we need to be able to neglect the first two

contributions to Bµ. What is the generic expectation for the size of these terms? First,

assume that 〈Σ + Σ†〉 is negligible. Then, working in the basis where Fφ is real, we can

insure that Bµ is dominated by the anomaly-mediated piece if FΣ is real. This choice has

the added benefit of solving the SUSY CP problem [12]. The µ term can be taken real,

and there is no relative phase between µ and Bµ. Furthermore, in mirage mediation the

gaugino masses and the A-terms are proportional to Fφ, so when FΣ is real, there are no

relative phases between these soft terms and µ.

Unfortunately, it is difficult to make 〈Σ + Σ†〉 vanish while simultaneously keeping FΣ

real. The term in eq. (4.1) has a special form, dependent on the combination Σ + Σ†. An

operator of this form most naturally would appear in theories where Σ is modulus and

therefore obeys a shift symmetry. References [16, 12] studied the conditions under which a

real FΣ could be ensured for a modulus field. Taking into account the equation of motion

for Im(Σ), the condition for a real FΣ is

WΣΣ

WΣ
∈ Reals. (4.4)

This requires a superpotential of the form [16, 12]

WΣ = aΣe
−bΣΣ + cΣ, (4.5)

with bΣ real. However, this superpotential does not allow stabilization of the Σ field at

small vev for generic coefficients. In fact, from the discussions in section 2, we know that

unless cΣ and aΣ are fine-tuned, this superpotential leads to

FΣ

〈Σ + Σ†〉 ¿ Fφ. (4.6)

– 8 –
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But from eq. (4.1), a non-zero vev for 〈Σ+Σ†〉 = 0 is equivalent to introducing a GM term.

So, once a non-zero vev is induced, we can recover the right µ/Bµ ratio, but only at the

expense of fine-tuning against a bare GM term. Since the hope was that mirage mediation

might give rise to a minimally tuned MSSM, this seems to present a strong challenge to

this mechanism for µ/Bµ.

One might wonder whether imposing this shift symmetry on Σ is too restrictive. How-

ever, the difficulty in keeping 〈Σ + Σ†〉 = 0 while inducing a non-zero FΣ seems to be more

generic. Given the goal of achieving a minimally fine-tuned MSSM, it is natural to impose

a symmetry to keep 〈Σ + Σ†〉 = 0. However, the only symmetry that make Σ = 0 special

while still allowing FΣ 6= 0 is an R-symmetry where Σ has R-charge 2, but this R-symmetry

is inconsistent with the Kähler potential in eq. (4.1).2 We conclude that the mechanism of

eq. (4.1) does not appear to solve the µ problem without additional fine-tuning.

A second potential solution to the µ problem is the Next to Minimal Supersymmetric

Standard Model (NMSSM) [17]. In the context of mirage mediation, this solution was

advocated in [18]. Unfortunately. the NMSSM superpotential

W = λNHuHd + κN3 (4.7)

is inconsistent with the stringent requirements necessary to keep the RG flow on the mirage-

mediated trajectory. Recall, if the superpotential contains a term φiφjφk, the corresponding

effective modular weights must satisfy

ri + rj + rk = 1. (4.8)

But at the scale Mmess, the soft scalar masses in mirage mediation are given by [1, 2]

m2
i (Mmess) = M2

0 ri. (4.9)

Therefore, non-zero vacuum expectation values for N , Hu, and Hd favor rN = rHu =

rHd = 0, otherwise the fields have large positive (mass)2 at the weak scale.3 These two

requirements are inconsistent, so any NMSSM solution to the µ problem will result in a

deflected-mirage mediation spectrum. Depending on the size of λ, this deflection could be

significant.

That said, even if we set rN = rHu = rHd = 0 and ignore the issue of deflection,

it is not obvious that mirage mediation will yield the right soft masses for the NMSSM.

The calculable contribution to the soft masses of the Higgs bosons come from anomaly

mediation. AMSB suffers from the usual difficulty of theories with great predictive power

on the soft masses—it is not automatic to get proper electroweak symmetry breaking while

obtaining a large enough µ term. In particular, in the minimal implementation of the

NMSSM, the anomaly-mediated contribution to the N soft mass is generically positive [19].

2One might be able to construct a theory with a spontaneously broken Σ → −Σ symmetry, but we do

not know of an explicit model.
3We could try giving fields negative effective modular weights so that they have large negative (mass)2

at the weak scale, but this pushes us further off the mirage-mediated trajectory. Plus, as in section 3, we

do not know of an extra-dimensional interpretation for negative effective modular weights.

– 9 –
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Therefore, in the absence of negative contributions to m2
N at the GUT scale, it might be

necessary to introduce additional vector-like pairs coupled to N , perhaps along the lines

of [20, 21]. If a convincing mechanism for α = 2 can be found, the phenomenology and

model building possibilities for mirage mediation in the NMSSM might be worth pursuing

further.

Finally, there is a promising mechanism to solve the µ/Bµ problem that is quite special

to mirage mediation [1]. It relies on the µ term being generated by the same underlying

non-perturbative dynamics that lead to the superpotential of eq. (2.2). If the µ term is

generated by the superpotential:

Wµ = Ae−bTHuHd, (4.10)

with b identical to the b of eq. (2.2), then the correct ratio of µ and Bµ can be achieved if

α = 2. This superpotential gives rise to

µ = 〈Ae−bT 〉 (4.11)

Bµ = −bFT 〈Ae−bT 〉+ Fφ〈Ae−bT 〉+ (γHu + γHd)Fφµ (4.12)

= µ [Fφ − 2M0〈bRe T 〉] + (γHu + γHd)Fφµ. (4.13)

If the terms in brackets cancel, we are left with just the sub-dominant anomaly-mediated

contribution, yielding the correct µ/Bµ ratio. Note that

Fφ − 2M0〈bRe T 〉 = M0(α− 2 +O(ε)), (4.14)

so this cancellation only occurs when α = 2, and therefore relies on the special relationship

between M0 and Fφ when there is a low mirage scale.

Interestingly, once a workable mechanism to achieve α = 2 is found, then it is feasible

to generate a potential of the form Wµ. T might be a modulus responsible for setting

a high energy gauge coupling for a supersymmetric gauge theory. For example, in pure

SUSY Yang-Mills, an operator of the form Wµ could arise from a coupling in the high

energy theory of the form ∫
d2θ

y

M2
WαWαHuHd. (4.15)

There is gaugino condensation in the low energy theory, and the operator WαWα may be

replaced by Λ3e−bT . Not only will gaugino condensation contribute to the above operator,

it will also give rise to the ae−bT in eq. (2.2) through the usual gauge kinetic term. This

determines the necessary size of y/M 2. In particular, as discussed in section 2, ae−bT ∼
Λ3e−bT is expected to be of order m3/2M

2
Pl. Thus,

µ ∼ y

M2
Λ3e−bT ∼ ym3/2

M2
Pl

M2
(4.16)

So, for M ∼ MPl, y ∼ 10−2 is required to recover a µ of order the weak scale. The low

energy effective theory described by this mechanism for the µ term is simply the MSSM

with mirage mediation.
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5. Conclusions

The mirage messenger scale depends crucially on the way that the SUSY-breaking sector

couples to the modulus. By explicitly including the light fields in the uplift sector, we have

been able to explore the plausibility of different mirage scales. If mirage mediation is to

solve the little hierarchy problem, SUSY breaking must interact with the modulus field in a

peculiar way such that the uplift sector becomes strongly coupled in the decompactification

limit. Only then can an effective messenger scale near the weak scale be realized.

Mirage mediation would stand as a compelling solution to the hierarchy problem if

physics ensuring the form of the Kähler potential in section 3 were found. Not only would

the little hierarchy problem be ameliorated, but the µ/Bµ problem could be naturally

solved, assuming that the µ term arose from the same dynamics that generated a super-

potential for T . It is interesting that a solution to the µ problem, typically a bane for

theories with a large m3/2, is available precisely in the case where the hierarchy problem

is best solved.

Given a compelling reason for α = 2, it would then be worthwhile to weigh cosmological

issues. In particular, [22] has noted that a mirage spectrum at the weak scale yields

tachyonic scalar masses when run up to high energies. Finite-temperature effects should

protect against charge/color breaking, but some might blanch at the idea of tachyonic

boundary conditions. At zero temperature, any false vacuum is far enough away in field

space to be harmless. It is also interesting to further investigate the cosmology of the

gravitinos and moduli in these theories. For heavy enough masses, the gravitinos decay

long-enough before big bang nucleosynthesis to prevent a problem, but there is a direct

tension between the gravitino mass and notions of naturalness. While it seems possible

to push the gravitinos heavy enough without completely spoiling naturalness, it would

be comforting if the cosmological difficulties could be completely decoupled, perhaps by

incorporating the ideas of [23].
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A. Series expansion for α

In this appendix, we calculate the ratio of Fφ to M0 = FT /(T + T †) for the supergravity

Lagrangian in eq. (2.1), using

Ω = Ω(X,X†, T + T †), W = a(X)e−bT + c(X). (A.1)

We treat Ω, a, and c as general functions. The constant b is real and we use units where

T has dimensions of length and X has dimensions of mass.
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As argued in the text, we are interested in expanding Fφ/M0 in a power series in

ε = 1/〈bRe T 〉, and we are particularly interested in α defined as

Fφ
M0

=
α

ε
+O(ε0). (A.2)

Recall that when 1/ε ∼ logMPl/m3/2, then α = 2 is the crucial value to achieve low fine-

tuning. To calculate the value of α, we solve the equations of motion for Fφ, FT , FX , and

T as series in ε, and tune the cosmological constant to zero order by order in perturbation

theory. Note that the X equation of motion is irrelevant for calculating α, though in

specific cases of interest, we will use the X equation of motion to check that X is properly

stabilized.

The scalar potential is (i = T,X)

V = F †φFφΩ +
(
F †φFiΩi + h.c.

)
+ F †i FjΩi†j + (3FφW + FiWj + h.c) , (A.3)

where subscripts on functions indicate partial derivatives. Instead of solving for T directly,

it is more convenient to solve for e−bT as a power series in ε, so note that

∂

∂T
e−bT =

−2ε

T + T †
e−bT ,

∂2

∂T 2
e−bT =

(
2ε

T + T †

)2

e−bT . (A.4)

Solving the equations of motion to leading order, we find

Fφ =
3c∗ (h∗ΩX − ΩX†X)

Ω ΩX†X − |ΩX |2
+O(ε), (A.5)

FX =
3c∗ (ΩX† − h∗Ω)

Ω ΩX†X − |ΩX |2
+O(ε), (A.6)

FT
T + T †

= ε

(
Fφ − FX

ΩX†XTF
†
X + ΩXTF

†
φ

2ΩX†TF
†
X + 2ΩTF

†
φ

+ FX
aX
2a

)
+O(ε2), (A.7)

e−bT

T + T †
= ε

F †φΩT + F †XΩX†T

2a
+O(ε2), (A.8)

where as in the text we have defined

h =
cX
3c
. (A.9)

The cosmological constant is

V0 = 3c (Fφ + hFX ) +O(ε), (A.10)

and tuning the CC to zero in perturbation theory by adjusting (for example) h, we find

α =
2

2− β − γ , β =
1

h

(
h∗ΩXT − ΩX†XT

ΩX†T − h∗ΩT

)
, γ =

1

h

aX
a
. (A.11)

In eq. (2.13), the value of 1/ε was estimated by simply comparing the ae−bT and c terms

in the superpotential. From eq. (A.8) and using the fine-tuning condition in eq. (A.10) we

see that to leading order, the T equation of motion gives

e−bT =
F †φ

(
h∗ΩT − Ω†XT

)

abh∗
. (A.12)
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For MPl ∼ (T + T †)ΩT , Ω†XT = 0, a ∼M 3
Pl and Fφ ∼ m3/2, we see that “naturally”

〈bT 〉 ∼ log
MPl

m3/2
, (A.13)

where we have used the fact that the solution to ew/w = f is approximately w = log f for

large f .

Finally, we calculate α for a field X with R-charge 2. In order to stabilize X, eq. (3.10)

must be augmented with higher order terms to the Kähler potential. Let M∗ be the

fundamental scale and (sM∗) be the scale that sets the size of higher dimension operators

involving X, with s¿ 1 by assumption. The Kähler potential and superpotential take the

form

Ω = −d1M
2
∗
(
M∗(T + T †)

)n0

+

(
d2X

†X − d3
(X†X)2

s2M2∗

)(
M∗(T + T †)

)rXn0

+ · · · , (A.14)

W = ae−bT + c+ 3chX, (A.15)

where di are dimensionless real parameters expected to be O(1), and we are already antic-

ipating that 〈X〉 ' 0. Solving the X equations of motion to leading order in ε and s2 and

tuning the CC to zero

〈X〉 = s2 d2h
∗M2
∗

d3
+O(s4), (A.16)

and to leading order in ε and second order in s2

β = −rX + h〈X〉rX (rX − 1)

2
, γ = 0. (A.17)

For sufficiently small values of s, order ε corrections to Fφ/M0 are as important as these

order s2 corrections, so we have seen that to the desired accuracy we can achieve

α =
2

2 + rX
. (A.18)

As long as di > 0 and rX < 1, then it is straightforward to check that all fields are stabilized

and the theory contains no ghosts or tachyons.

References

[1] K. Choi, K.S. Jeong, T. Kobayashi and K.-I. Okumura, Little SUSY hierarchy in mixed

modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029].

[2] R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the

MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039].

[3] K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux

compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076

[hep-th/0411066].

[4] K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in kklt

flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216].

– 13 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB633%2C355
http://arxiv.org/abs/hep-ph/0508029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB631%2C58
http://arxiv.org/abs/hep-ph/0509039
http://jhep.sissa.it/stdsearch?paper=11%282004%29076
http://arxiv.org/abs/hep-th/0411066
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB718%2C113
http://arxiv.org/abs/hep-th/0503216


J
H
E
P
0
9
(
2
0
0
6
)
0
1
7

[5] V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective

supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040].
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